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Danjon noticed that the length (cusp to cusp) of the new crescent 

moon was less than 180 degrees and suggested that the cause of the 

shortening is the shadows of the lunar mountains. McNally, however, 

attributed the crescent shortening to atmospheric seeing, while Schaefer 

suggests that length shortening is due to sharp falling off of the brightness 

towards the cusps.       

      We attribute length shortening to the Blackwell contrast threshold; we 

consider the thin crescent as a group of discs of varying angular size, and 

each has its equivalent Blackwell disc, the largest being at the centre of the 

crescent. The discs become smaller in the direction of the cusps, therefore 

the Blackwell thresholds become higher. According to this model, if we 

know the apparent diameter of the Moon and the width of the crescent, we 

can calculate the approximate visible length of the crescent. 
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Introduction 

  In 1931 August, Danjon1 at the Strasbourg Observatory, France, noticed that the 

length (cusp to cusp) of the crescent Moon, which was only 16.6 hours before 

conjunction, extended only 70−80 degrees instead of 180 degrees. He suggested that 

the cause of the shortening is the shadows of the lunar mountains. However, McNally2 

did not accept this interpretation and showed that the height of the mountainous lunar 

terrain compared to the lunar radius is not sufficient to be the cause of shortening; he 

attributed the crescent shortening to atmospheric seeing. Schaefer3, in turn, rejected 

McNally’s explanation, showing that the resolution of the human eye is larger than the 

size of the crescent disc so that seeing has no effect on the perceived width. He 

suggested that length shortening is due to sharp falling off of the brightness towards the 

cusps, emphasizing that detection threshold does not depend on the surface brightness 

of the Moon but on the total brightness integrated across the crescent. He points out3 

that as the extreme parts of the crescent are narrower than the resolution of the eye “the 

detection threshold does not depend on the surface brightness of the Moon, but on the 

total brightness integrated across the crescent”. 

�

Discussion�

We disagree with Schaefer because we believe that human vision is more 

sophisticated than he suggests. Briefly, human vision involves the simultaneous 

interaction of the eye and the brain through a network of neurons, receptors, and other 

specialized cells. The retina contains neural circuitry that converts light energy to action 

potentials that travel along the optic nerve to the brain. If the retinal area that is 

illuminated is small enough then the photons will fall entirely within the centre of the 

receptive field. If enough photons fall into the receptive field, the ganglion cell will 
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respond by firing. According to Ricco's Law of spatial summation, if we increase the 

area of the stimulus so that it is still within the centre of the receptive field, then more 

photons would be collected over this larger area and so a lower intensity of light would 

be required. Ricco's Law of spatial summation has been completely disregarded by 

Schaefer: “the experiments (see also Blackwell 1946) show that unresolved circles of 

light have a threshold that is independent of the source size, yet which depends on the 

total brightness within the circle. The basic idea is that all that matters is how much 

light is received by any resolution element of the eye and not how the light is spread 

over the ‘pixel’.” 

         As far as I know Schaefer is the most prolific contributor to the subject that we 

are discussing, but his paper4 implies a measure of confusion with some photometric 

definitions such as brightness, surface brightness, integrated brightness, and total 

integrated brightness.  In spite of this (i.e., if we neglect Schaefer’s length-shortening 

interpretation), he got very good empirical, results represented by his Fig. 2.     

      Clark describes Blackwell’s 19464 data in his excellent book5 entitled Visual 

Astronomy of the Deep Sky; Clark has added additional comments since the book's 

publication (1990), at http://clarkvision.com/visastro/omva1/index.html. At this site, 

Clark illustrates Blackwell’s 1946 data in a diagram (his Fig. 2.6) which he explained 

as follows: “Here we notice that for objects with small angular sizes, the smallest 

detectable contrast times the surface area is a constant. As an object becomes larger, 

this product is no longer constant. The angle at which the change occurs is called the 

critical visual angle. An object, smaller than this angle, is a point source as far as the 

eye is concerned. (A point can be considered the angular size smaller than which no 

detail can be seen.)”  
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         In effect, Clark specifies the domain of utilization of Ricco’s Law, which should 

be less than the critical visual angle. For stimuli smaller than the critical visual angle, 

i.e., on the left side of Clark’s figure, we conclude two things: the first was mentioned 

by Clark himself while the second was mentioned neither by Schaefer nor by Clark. (i) 

When the contrast between surface brightness of the stimulus and surface brightness of 

the background is higher than Blackwell’s contrast threshold, the object is seen as a 

point source; and (ii) when it is less than Blackwell’s threshold, the object couldn’t be 

seen at all. Therefore, the visibility of small stimuli  smaller than the critical visual 

angle  is characterized by the left-side curves of Clark’s Figure. From these curves, 

we find that the stimulus visibility always depends on its luminance, its diameter, and 

the background luminance even if it is smaller than the critical visual angle. 

Crescent-length calculations 

We consider the thin lunar crescent as a group of discs of varying angular 

size, and each has its equivalent Blackwell disc. The largest disc is at the centre of 

the crescent. Discs become smaller in the direction of the cusps, therefore 

Blackwell thresholds become higher. To obtain Blackwell’s contrast threshold, Cth, 

for discs of diameters less than 0.6 minute of arc, we extrapolate the data in table 

VIII of Blackwell4. Fig.1 is an example of our extrapolations.  We found that the 

smallest width to be seen depends mainly on three local factors: site elevation, sky 

luminance, and the zenith distance of the Moon at the moment of observation. It is 

also depends on whether the Moon is near apogee or perigee. For our site at 

Mouneef (1990 metres, 44° E, 13° N), the two smallest widths to be seen are about 

0.16 arc minute when the Moon is near apogee and about 0.18 arc minute when the 

Moon is near perigee. 
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From standard software and Fig. 2, we can calculate the length of the visible 

crescent as follows: on the vertical diameter of the Moon’s disc (Fig. 2), the length 

of the group of discs starting with the disc at the centre and ending at the end of one 

cusp is equal to r + W/2, then   

  r + W/2 = W + W1 + W2 + …. 

                    = W + W [1 − W/(r + W/2)] + W [1 − W/(r + W/2)]2 + ….         (1) 

From Danco5, the right side of Eqn.1 represents a decreasing geometric 

progression whose sum is equal to W/W/(r + W/2), which is clearly equal to the left 

side of Eqn.1. 

In Fig. 2, let L/2 be the distance starting at the centre of the Moon’s disc and 

ending at the beginning of the largest invisible width w (for our site w = 0.14 arc 

minute when the Moon is near apogee and w = 0.16 arc minute when the Moon is 

near perigee) 

                               L /2  = r – w/W /(r + W/2)  

                                       = r – w (r + W/2)/W 

then, 

                                  L  = 2r – 2w (r + W/2)/W, 

where L represents the vertical component of the visible crescent length in arc 

minutes. Then the visible crescent length in degrees will be: L /2r × 180°. 

If we take w = 0.15 arc minute as an approximate value for the biggest 

invisible width, we get a simple formula for calculating crescent length. It depends 

only on two factors: the apparent diameter of the Moon, D, and the width of the 

crescent, W.  Then 

                   L = D – 0.3 (D + W)/2W.     (2) 
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Putting the model to the test 

In the following, we test our model calculations using two well-documented 

observations. We ask the reader to compare our results with those given by the only 

existing model  Schaefer’s model.  

 Danjon’s observation of 1932 August 13: (reported length =  70−80°) 

 D    = 32.88 arc minute  

 W    = 0.27 arc minute  

 L    = D – 0.3 (D + W)/2W 

       = 14.46 arc minutes  

 The crescent length in degrees will be  

             L/D × 180° = 79.2° 

 By using MOONC60 software (http://www.starlight.demon.co.uk/mooncalc), 

which adopts Schaefer's model, we get L/D× 180°   = 93° 

  

 Stamm’s observation of 1996 January 20: (reported length6 = 45°) 

 D = 33.32 arc minute  

 W = 0.19 arc minute  

 L = D – 0.3 (D + W)/2W 

    = 6.9 arc minute  

 The crescent length in degrees will be  

             L/D × 180° = 37.1° 

 By using Schaefer's model we get L/D× 180°  = 56° 
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Conclusions 

Our model gives a new explanation for the cause of length shortening of 

the new crescent Moon and it introduces a method for calculating the 

approximate visible length of the thin crescent Moon. Further, our photometric 

model gives the same results obtained by Schaefer’s empirical model but with a 

different interpretation concerning the cause of length shortening. 
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Figure Captions 
 
 

FIG. 1: An example of our extrapolation of the data in table VIII of Blackwell4, the 

crescent width is equal to 0.1 arc minute. 

 

FIG. 2. Starting from the centre of the crescent and going in the direction of the 

cusps, the crescent contains two groups of discs; each group represents a decreasing 

geometric progression. The visible crescent length in degrees will be: L /2r × 180°, 

where L represents the vertical component of the visible crescent length in arc 

minutes and is given by L = 2r – 2w (r+W/2)/W, and where r is the apparent semi- 

diameter of the Moon, W is the width of the crescent, and w is the largest invisible 

width. For our site w = 0.14 arc minute when the Moon is near apogee and w = 0.16 

arc minute when the Moon is near perigee. 
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